
Malaysian Journal of Mathematical Sciences 7(S): 117-129 (2013)

Special Issue: The 3
rd

 International Conference on Cryptology & Computer Security 2012

(CRYPTOLOGY2012)

A New Efficient Analytically Proven

Lossless Data Compression for Data Transmission Technique

1
M. A. Daud

and

2
M. R. K. Ariffin

1
Al – Kindi Cryptography Research Laboratory,

Institute for Mathematical Research, Universiti Putra Malaysia,

43400 UPM Serdang, Selangor, Malaysia

2
Mathematics Department, Faculty of Science,

Universiti Putra Malaysia, 43400 UPM Serdang Selangor, Malaysia

E-mail: azlanmath@gmail.com and rezal@putra.upm.edu.my

*Corresponding author

ABSTRACT

A new lossless data compression method for data transmission is proposed. This
new compression mechanism does not face the problem of mapping elements from a
domain which is much larger than its range. Our new algorithm sides steps this
problem via a pre-defined code word list. The algorithm has fast encoding and
decoding mechanism and is also proven analytically to be a lossless data

compression technique.

Keywords: lossless data compression method, pre-defined code word list, coding
techniques.

1. INTRODUCTION

Compression is the processes of reducing the size of a file by doing

some alteration to the structure. In real world applications, compression is
very useful because it helps to reduce the consumption of expensive

resources, such as memory space, total time for data transfer over network

and communication costs by using available bandwidth effectively.

There are 2 categories. The first category is known as the lossless

data compression technique. By this technique compressed data can be
decompressed without any loss of data. This means that, the information

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

Journal homepage: http://einspem.upm.edu.my/journal

M.A. Daud

& M.R.K. Ariffin

118 Malaysian Journal of Mathematical Sciences

after being decompressed does not change from its original structure before
compression. It is also known as reversible compression since the original

data is reconstructed by decompression process. An example is the ZIP file

mechanism. Since the original data becomes smaller, it is easy to be
transmitted trough today’s public bandwidth. The second category is lossy

data compression techniques. Through this technique the decompression

process of compressed data produces results with loss of some information.

This compression technique is called irreversible compression since it is not
possible to reconstruct 100% the original message during the

decompression process.

Lossless data compression quality usually depends on the following

criteria’s:
1. Total time for compression

2. Total time for reconstruction

3. Size of the compressed data when compared to the original data

The above list can be measured through entropy and compression ratio.

Definition 1 (Entropy)

Let � be a random message (random experiment) with outcomes � �
���, … , ��	 having probabilities
�, … ,
�.

The entropy of the message � is given by

���
 � � �
��
 log�
��

���

���
 measures the uncertainty of the outcome of �. Since we know that

log�
��
 � 0, we have ���
 � 0. We also define 0 log� 0 � 0 since

lim��� � log� � � 0.

Remark 1

Whenever average length of the compressed data is approximately equal to

the entropy then we can conclude that the corresponding algorithm has a
good compression rate.

Definition 2 (Compression Ratio)

Compression ratio is defined as

A New Efficient Analytically Proven Lossless Data Compression for Data Transmission Technique

Malaysian Journal of Mathematical Sciences 119

Compression ratio, � � Uncompressed size � Compressed Size
Uncompressed size

Remark 2

From Definition 2, it implies that if �+ � 1 (i.e. Compressed size � 0), the

algorithm has an excellent compression rate.

Many proposed algorithms are defined as lossless data

compression. For lossless data compression, main stream techniques are

based on entropy coding (aka statistical coding). Notable are the Huffman
(Roman (1997)) and arithmetic coding algorithms (Langdon (1979)). An

entropy based coder must work in conjunction with a modeler that estimates

that probability of each possible event at each point in the coding. The
probability model need not describe the process that generates the data; it

merely has to provide a probability distribution for data items. The

probabilities do not even have to be particularly accurate, but the more

accurate they are, the better the compression will be (Hellebrand and
Wurtenberger (2002)).

Another lossless compression technique is based on dictionary

coding. Lempel-Ziv is an example of dictionary coding (Ferreira, Oliveira

and Figueiredo (2009)). In an attempt to produce efficient algorithms,
researchers have merged both the entropy and dictionary coding techniques.

The Alternating Run Length (ARL) coding is one such case. It is based on

the Frequency Directing Run-length (FDR) coding efficiently exploits the
fact that typical test data contain shorter runs of zeros or ones with higher

frequencies than longer runs and prior to producing the output it refers to a

coding table. The ARL encoding algorithm is advantageous when it does

not require any extra information to distinguish between runs of zeros and
ones (Hellebrand and Wurtenberger (2002)).

In this work, we produce a new lossless type compression method

that models after the dictionary type coding technique. It is based on a

coding table that has a one-to-one mapping of a list of integers less than a

predetermined data size (i.e. 1,2, … , .) to its corresponding codeword. The

algorithm is also proven analytically to be unique, hence overruling the

possibility of decoding failure.

This paper will be structured as follows. In Section 2, we will

introduce the new compression encoding algorithm based on the dictionary
coding strategy. It is of lossless data compression type. In this section we

will explain our compression algorithm details and we also conduct an

example. Following this in Section 3, we will prove that the decoding

M.A. Daud

& M.R.K. Ariffin

120 Malaysian Journal of Mathematical Sciences

process is unique. Hence, ensuring a 100% success rate in restructuring the
compressed data back into its original form (i.e. lossless). An example will

be provided in Section 4. In Section 5, discussion on the compression ratio

will be put forward via examples. Discussion on transmission advantages is
in Section 6. Finally we conclude in Section 7.

2. HOW THE COMPRESSION ALGORITHM WORKS

In this section we begin with observing the following code word.

The right column (binary code) is the code word for its counterpart residing

within the same row in the left column (number).

 TABLE 1: Binary codes to represent the integers

Number Binary Code

1 1

2 10

3 100

4 1000

5 10000

6 100000

⋮ ⋮
. � 1 13�. � 1
 � 14056

. 13�. � 1
4056

Definition 3 (Compression Algorithm)

Prior to the encoding process, to ensure correct decoding the size of the

original data, n is known to both the encoder and decoder. We denote 787

to be the length of the corresponding data string 8 � �0,1	�. For 9 �
1,2,3, … we define the 9-th data string as 8: � ;2<=>?@< � 1A � 8:B�. Given

a data string input 8�, we will do the following

i. Convert 8� to its decimal value.

ii. Compute, 8� � C27=D7 � 1E � 8�

iii. Code the difference between the length of 78�7 and 78�7 as F� (refer

Table 1)

iv. Continue the loop 8: � ;2<=>?@< � 1A � 8:B� for 9 � 1,2,3, … , G until

0 � 8: � 3 (observe that <8:< � 2). In each loop a codeword F: will

A New Efficient Analytically Proven Lossless Data Compression for Data Transmission Technique

Malaysian Journal of Mathematical Sciences 121

be produced based on the difference between the length of <8:B�<

and <8:<. Observe that the values of 8:are strictly decreasing, and as

soon as it reaches 0 � 8: � 3 the algorithm will terminate.

v. From the codeword list �F� , F�, … , FHB�, FH	 we will append 8H at

the end of the codeword to gain � � �F�, F� , … , FHB�, FH , 8H	. Once

again observe that 7�7 � .. Then, focus on the last codeword FH 8H

will be shifted to the left according to the number of zeros in FH. The

result is compressed data denoted by �I.

vi. The encoder will then send the compressed data �I. Notice that the

zero’s within FH is excluded in the corresponding sequence which

constructs �I. Hence, 7�I7 J 7�7.

3. UNIQUENESS OF THE DECODING PROCESS

Proposition 1 (Decompression Algorithm)

The following decoding process of an encoded information by Definition 3

is unique.

1. Expand �I to the original size 7�7 by shifting back 8H to the right

by padding in zero’s until we have 7�I7 � 7�7. To decode we

have to decide where each code begins and ends, since they do not

have the same length. During the encoding process we utilized the
codeword list as given by Table 1. As a result, we only need to scan

through the input string of �I from right to left until we recognize

the first codeword. Then, we are able to determine the corresponding

value and start looking for the next codeword. Observe that from
Table 1 all cases will begin with 0 from the right and stop with 1 on

the left.

2. Excluding 8H, start by extracting the codeword from the LSB of �I.

Translate the codeword from Table 1.

3. Compute, 8HB� � C27KD7 � 1E � 8H where 7
�7 � 7FH7 L 78H 7.

4. Next, compute, 8HB� � C27K@7 � 1E � 8HB� where 7
�7 �
7FHB�7 L 7
�7.

5. Continue until 8HBM � C27KN?@7 � 1E � 8HBMO�, where R �
1,2,3, … , G. The original data is 8�.

M.A. Daud

& M.R.K. Ariffin

122 Malaysian Journal of Mathematical Sciences

Proof. The compression algorithm consists of a sequence of subtractions.

Assume that the decoding process is not unique, then for unique 8HBMO� and

7
MB�7 there exists 8HBM � C27KN?@7 � 1E � 8HBMO� and 8′HBM �
C27KN?@7 � 1E � 8HBMO� such that 8HBM T 8′HBM. This would imply that

8HBMO� T 8HBMO�. This is a contradiction. Hence, assumption is false and

the decoding process provides a unique output.U

4. EXPERIMENTAL EXAMPLES

Example 4.1

Our example focus on encoding process, decoding process is reversing the

encoding process. This example will show you how our algorithms work to
encode and decode easily.

Suppose we have an input string

8� � �11111101111010110000000000000011	, 78�7 � . � 32 and

8� � 4260036611.

Compression process

1. Compute, 8� � C27=D7 � 1E � 8� � �2V� � 1
 � 4260036611 �
34930684, 78�7 � 26

2. Compute the difference between 78�7 and 78�7, then our first

codeword is F� � 78�7 � 78�7 � 32 � 26 � 6 � 100000.

3. Compute, 8� � C27=@7 � 1E � 8� � �2�Y � 1
 � 34930684 �
32178179, 78�7 � 25 and F� � 78�7 � 78�7 � 26 � 25 � 1 � 1.

4. Compute, 8V � C27=[7 � 1E � 8� � �2�\ � 1
 � 32178179 �
1376252, 78V7 � 21 and FV � 78�7 � 78V7 � 25 � 21 � 4 �
1000.

5. Compute, 8] � C27=^7 � 1E � 8V � �2�� � 1
 � 1376252 � 720899,

78]7 � 20 and F] � 78V7 � 78]7 � 21 � 20 � 1 � 1.

6. Compute, 8\ � C27=_7 � 1E � 8] � �2�� � 1
 � 720899 � 327676,

78\7 � 19 and F\ � 78]7 � 78\7 � 20 � 19 � 1 � 1.

7. Compute, 8Y � C27=`7 � 1E � 8\ � �2�a � 1
 � 327676 � 196611,

78Y7 � 18 and FY � 78\7 � 78Y7 � 19 � 18 � 1 � 1.

A New Efficient Analytically Proven Lossless Data Compression for Data Transmission Technique

Malaysian Journal of Mathematical Sciences 123

8. Compute, 8b � C27=c7 � 1E � 8Y � �2�d � 1
 � 196611 � 65532,

78b7 � 16 and Fb � 78Y7 � 78b7 � 18 � 16 � 2 � 10.

9. Compute, 8d � C27=e7 � 1E � 8b � �2�Y � 1
 � 65532 � 3, 78d7 � 2

and Fd � 78b7 � 78d7 � 16 � 2 � 14 � 10000000000000.

10. Then, we have the codeword � � �F�F�FV f FbFd8d	 �
�10000011000111101000000000000011	, 7�7 � 32.

11. Next, shift 8d
to the left base on how much zero’s in Fd, now we have

the compressed data given by �′ � �1000001100011110111	,

<�′< � 19.

Decompression process

Given �′ � �1000001100011110111	, <�′< � 19 and 78�7 � 7�7 �
. � 32.

1. Expand the code word 7�g7 to the original size 7�7 by a shift back

8d to the right, � � �10000011000111101000000000000011	.

2. Fd � 10000000000000 � 14, 7
�7 � 7Fd7 � 78d7 � 14 L 2 �
16.

3. Compute, 8b � C27KD7 � 1E � 8d � �2�Y � 1
 � 3 � 65532.

4. Then, continue the loop until 8� � 4260036611, 7
b7 � 32.

With this example we provide empirical evidence of our compression

method showing its execution as a lossless compression method.

5. COMPRESSION RATIO

From example 4.1, the original message . � 32 bits length and

compressed message = 19 bits, then from Definition 2 its compression ratio,
CR = 0.40625. In this section we provide more experimental results for

discussion.

We took data of different sizes: 8-bits, 16-bits, and 32-bits and

compared their compression ratio by using our algorithm coding scheme for

data compression. Suppose we want to compress 8-bit messages
“10111101”, “00011110”, “11000111” and “00000011”.

M.A. Daud

& M.R.K. Ariffin

124 Malaysian Journal of Mathematical Sciences

Example 5.1

Change to decimal, 8� � 10111101 � 189

TABLE 1: Compression process for . � 8-bits data sample

8M FM Codeword
before shift

Codeword
after shift

CR

32d � 14 � 189 � 66 1 11100010 11110 0.375

32b � 14 � 66 � 61 1

32Y � 14 � 61 � 2 1000

Remainder = 2 10

Example 5.2

Change to decimal, 8� � 00011110 � 30

TABLE 2: Compression process for . � 8-bits data sample

8M FM Codeword

before shift

Codeword

after shift

CR

32\ � 14 � 30 � 1 100 00010001 000101 0.25

Remainder = 1 01

Example 5.3

Change to decimal, 8� � 11000111 � 199

TABLE 3: Compression process for . � 8-bits data sample

8M FM Codeword
before shift

Codeword after
shift

CR

32d � 14 � 199 � 56 10 10100100 10100100 0

32Y � 14 � 56 � 7 100

32V � 14 � 7 � 0 1

Remainder = 0 00

Example 5.4

Change to decimal, 8� � 00000011 � 3

TABLE 4: Compression process for . � 8-bits data sample

8M FM Codeword
before shift

Codeword
after shift

CR

 00000011 00000011 0

Remainder = 3 11

A New Efficient Analytically Proven Lossless Data Compression for Data Transmission Technique

Malaysian Journal of Mathematical Sciences 125

Example 5.5

Change to decimal, 8� � 1011110100011110 � 48414

TABLE 5: Compression process for . � 16-bits data sample

8M FM Codeword before
shift

Codeword after
shift

CR

32�Y � 14 � 48414

� 17121

1 1110001110010001 11100011100101 0.125

32�\ � 14 � 17121

� 15646

1

32�] � 14 � 15646

� 737

1000

32�� � 14 � 737

� 286

1

32a � 14 � 286

� 225

1

32d � 14 � 225

� 30

100

32\ � 14 � 30

� 1

100

Remainder = 1 01

Example 5.6

Change to decimal, 8� � 10111101000111101100011100000011 �
3172910851

TABLE 6: Compression process for . � 32-bits data sample

8M FM Codeword before

shift

Codeword after

shift

CR

32V� � 14 � 3172910851

� 1122056444

1 1110001110010001
1010010010000011

11100011100100
0110100100111

0.156

32V� � 14 � 1122056444

� 1025427203

1

32V� � 14 � 1025427203

� 48314620

1000

32�Y � 14 � 48314620

� 18794243

1

32�\ � 14 � 18794243

� 14760188

1

32�] � 14 � 14760188

� 2017027

100

32�� � 14 � 2017027

� 80124

1000

M.A. Daud

& M.R.K. Ariffin

126 Malaysian Journal of Mathematical Sciences

TABLE 6 (continued): Compression process for . � 32-bits data sample

8M FM Codeword before
shift

Codeword after
shift

CR

32�b � 14 � 80124

� 50947

1 1110001110010001
1010010010000011

11100011100100
0110100100111

0.156

32�Y � 14 � 50947

� 14588

10

32�] � 14 � 14588

� 1795

100

32�] � 14 � 1795

� 252

100

32d � 14 � 252

� 3

100000

Remainder = 3 11

6. ADVANTAGES DURING TRANSMISSION

In this section we tabulate according to the following items:

1. Speed of transmission without partitioning the data

2. Speed of transmission after partitioning data
3. Number of data transmission needed (i.e. effort) by machine to transmit

(i.e. direct relation with number of partitions on the data to be

compressed)

We can see that the compression ratios of all data sizes data are
different. The compression ratio of data in table 1 is 0.375 and data in table

5 is 0.125. This is a result of conducting the compression algorithm upon

the data without any partitioning of the data. To search for better effiency

in deploying the compression algorithm, we partition the 16-bits data in
table 5 to 2 new blocks (it has to be noted that for easy reference the data in

Table 5 is actually a concatenation of data from Table 1 and Table 2) and

we can have compression ratio 0.267. The new compression ratio is better
than before. However, if we take data from table 6 which has 0.156

compression ratio and split the data into 4 8-bit blocks, the compression

ratio is still same because of block 3 and block 4 does not have any

compression and is shown in Table 3 and Table 4. However, maybe there
will be a “give and take” situation. That is, to achieve better speed by

partitioning the data (in order achieve better compression), the effort by the

device to relay the data will increase.

A New Efficient Analytically Proven Lossless Data Compression for Data Transmission Technique

Malaysian Journal of Mathematical Sciences 127

 The following is a flow chart of the compression process. As an

example, let the data be partitioned into . � 8 bits. If the remainder is not a

multiple of 8, just pad it with zeroes. For R � 1,2, … , G do

Figure 1: Compression flow chart

Data is transmitted by blocks, and will be reconstructed by block

received. It is easy to observe that the flow of our suggested compression

method is in line with current data transmission process. To implement our
compression mechanism, one only has to determine the corresponding

block size according to their needs.

 Next, we consider data transmission with the ability to transfer 1 bit

data per second. We also assume that the transmission process preceding

the compression algorithm will relay . � 8 bits per transmission. We can
have the following table.

Data to be

transmitted

Data partitioned
into . � 8 bits /

block

Partition – R
compressed

Partition – R sent

Partition – R
received

Partition – R
re - constructed

M.A. Daud

& M.R.K. Ariffin

128 Malaysian Journal of Mathematical Sciences

TABLE 7: Comparative table

Data before

compression
Table 1 Table 5 Table 6

CR (without

partitioning)
0.375 0.125 0.156

Number of

partitions
NO

2 blocks

of 8 bits

4 blocks of

8 bits

CR (with

Partitioning)
- 0.267 0.156

Speed without

compression
8 16 32

Speed

(compression

without

partitioning)

5 14 19

Speed

(compression with

partitioning)

- 11 19

Efforts Speed

(compression with

partitioning)

1 2 4

Hence, from the above table, it is clear that in some cases partitioning the

data will actually result in better speed (at the expense of increased effort by

the device).

7. CONCLUSION

 This compression scheme gives us many options. Some data will

have better compression without partitioning the original data, but there
exists cases where partitioning data gives better compression. However

better compression means more effort must be put on the transmitting

device – even though it is transmitted faster. To this end, this new

compression algorithm is certainly advantageous since it is proven
analytically to decompress into the exact data. This certainly differs from

existing lossless compression methods that are probabilistic in nature (i.e.

being able to decompress into exact data by probabilistic mechanisms).
Through this work, the scheme can easily be visualize on current

transmission technology and would be efficient for live data streaming.

A New Efficient Analytically Proven Lossless Data Compression for Data Transmission Technique

Malaysian Journal of Mathematical Sciences 129

REFERENCES

Ahmadi, O. and Menezes. 2005. Irreducible Polynomials of Maximum

Weight. CACR Technical Reports.

Burrows, M. and Wheeler, D. J. 1994. A Block-sorting Lossless Data

Compression Algorithm. SRC Research Report. 124: 1-18.

Ferreira, A. J., Oliveira, A.L. and Figueiredo, M. A. T. 2009. On the

Suitability of Suffix Arrays for Lempel-Ziv Data Compression,

DCC 2009: 444.

Hellebrand, S. and Wurtenberger, A. 2002. Alternating Run-Length

Coding- A Technique for Improved Test Data Compression.

Handout
rd3 IEEE International Workshop on Test Resource

Partitioning, Baltimore, MD, USA.

Langdon, G. G. 1979. Arithmetic Coding. IBM J. Res. Develop. 23: 149-
162.

Pathak, S., Singh, S., Jain, M. and Sharma, A. 2011. Data Compression
Scheme of Dynamic Huffman Code for Different Languages. 2011

International Conference on Information and Network Technology.

4: 201-205.

Roman, S. 1997. Introduction to Coding and Information Theory. Springer:

51-63.

Ward, M. D. 2005. Exploring Data Compression via Binary Trees, 143-150.

